Numerical integration methods (ODE+PDE)

Jost von Hardenberg – ISAC-CNR

Numerical integration of differential equations

We search a solution (a numerical approximation) for an ordinary differential equation

 $\frac{d^2y}{dt^2} = -ky$

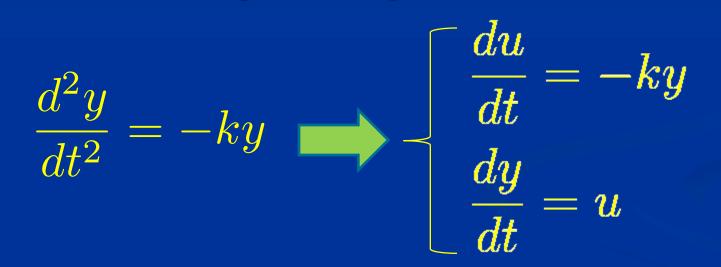
Or a partial differential equation:

$$rac{\partial u}{\partial t} = k rac{\partial^2 u}{\partial x^2}$$

Given appropriate initial and boundary conditions

Numerical integration of ODEs

NB: any ODE of order > 1 can be written as a system of first order equations Eg:

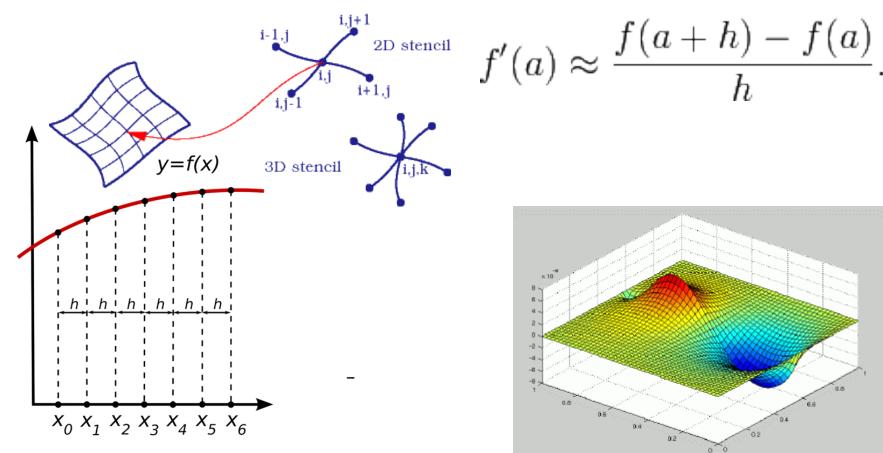


General problem:

$$\frac{dy_i}{dt} = f_i(y_1, y_2...y_n; t)$$

Finite difference methods

We substitute to the continous problem a representation on a discretized grid (in space and time)

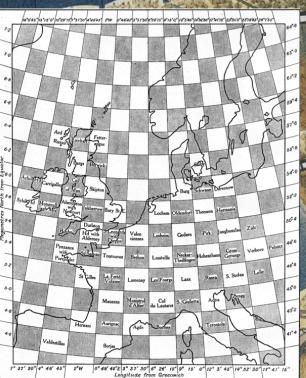


Veather Prediction by Numerical Process (1922)

The forecast factory

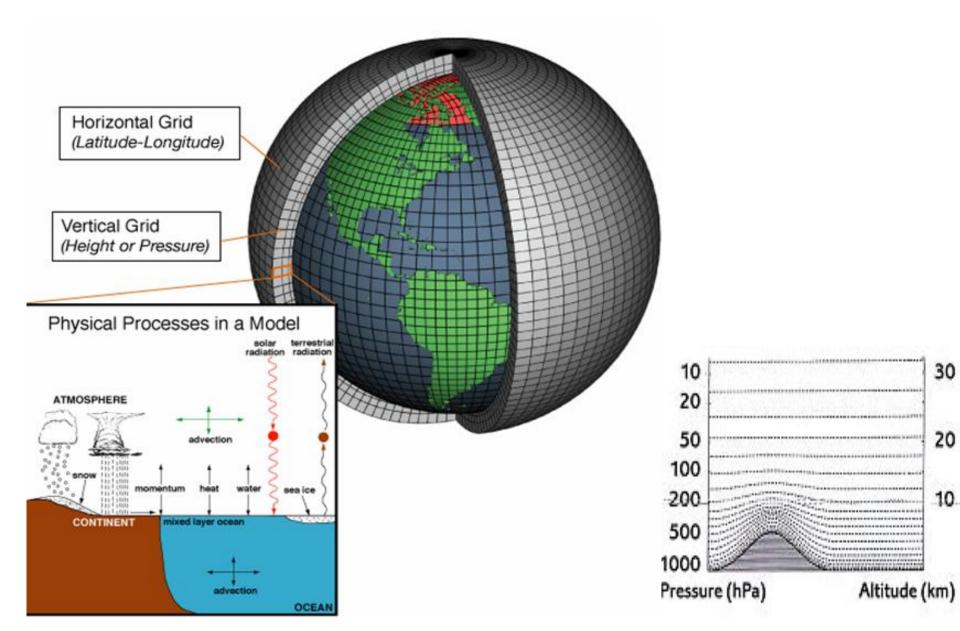
L. F. Richardson, 1931

NAMES ADDRESS OF



"Imagine a large hall like a theater except that the circles and galleries go right round through the space usually occupied by the stage. The walls of this chamber are painted to form a map of the globe. . . . From the floor of the pit a tall pillar rises to half the height of the hall. It carries a large pulpit on its top. In this sits the man in charge of the whole theatre." (Weather Prediction by Numerical Process)

Numerical circulation models

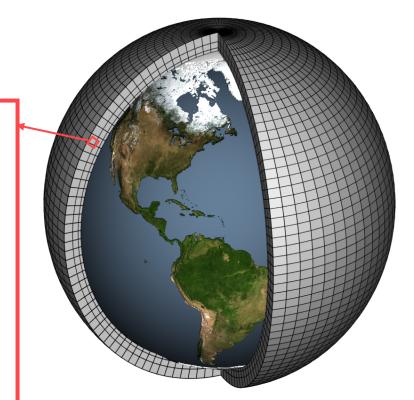


Mathematical equations that represent the physical characteristics and processes are entered for each box

$$\begin{aligned} \frac{\partial u}{\partial t} &= \eta v - \frac{\partial \Phi}{\partial x} - c_p \theta \frac{\partial \pi}{\partial x} - z \frac{\partial u}{\partial \sigma} - \frac{\partial \left(\frac{u^2 + v^2}{2}\right)}{\partial x} \\ \frac{\partial v}{\partial t} &= -\eta \frac{u}{v} - \frac{\partial \Phi}{\partial y} - c_p \theta \frac{\partial \pi}{\partial y} - z \frac{\partial v}{\partial \sigma} - \frac{\partial \left(\frac{u^2 + v^2}{2}\right)}{\partial y} \\ \frac{\delta T}{\partial t} &= \frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} \\ \frac{\delta W}{\partial t} &= u \frac{\partial W}{\partial x} + v \frac{\partial W}{\partial y} + w \frac{\partial W}{\partial z} \\ \frac{\partial \partial t}{\partial \sigma} &= u \frac{\partial}{\partial x} x \frac{\partial p}{\partial \sigma} + v \frac{\partial}{\partial y} y \frac{\partial p}{\partial \sigma} + w \frac{\partial}{\partial z} z \frac{\partial p}{\partial \sigma} \end{aligned}$$

Equations are converted to computer code and climate variables are set

```
if (diagts .and. eots) then
  do 1500 m=1,nt
    do 1490 k=1,km
      fx = cst(j)*dyt(j)*dzt(k)/(c2dtts*dtxcel(k))
      do 1480 i=2,imtm1
        boxfx
                        = fx*dxt(i)*fm(i,k,jc)
        sddt
                        = (ta(i,k,m)-t(i,k,jc,nm,m))*boxfx
                        = (ta(i,k,m)**2-t(i,k,jc,nm,m)**2)
        svar
                          *boxfx
                        = 0
        n
        termbt(k,1,m,n) = termbt(k,1,m,n) + sddt
        tvar(k,m,n)
                        = tvar(k,m,n)
                                          + svar
              = nhreg*(mskvr(k)-1) + mskhr(i,j)
        n
       if (n .gt. 0 .and. mskhr(i,j) .gt. 0) then
          termbt(k,1,m,n) = termbt(k,1,m,n) + sddt
          tvar(k,m,n)
                          = tvar(k,m,n)
                                            + svar
```



Finite differences representation of derivatives

Can be obtained from

 Classical definition of first order derivative of a function u(x,y) at a point:

$$rac{\partial u}{\partial x}|_o = lim_{\Delta x \to 0} rac{u(x_o + \Delta x, y_o) - u(x_o, y_o)}{\Delta x}$$

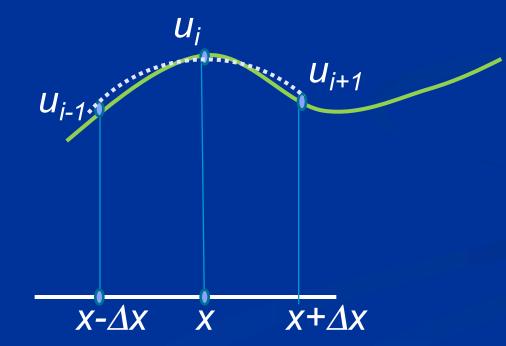
Taylor expansion of u(x,y) around a point

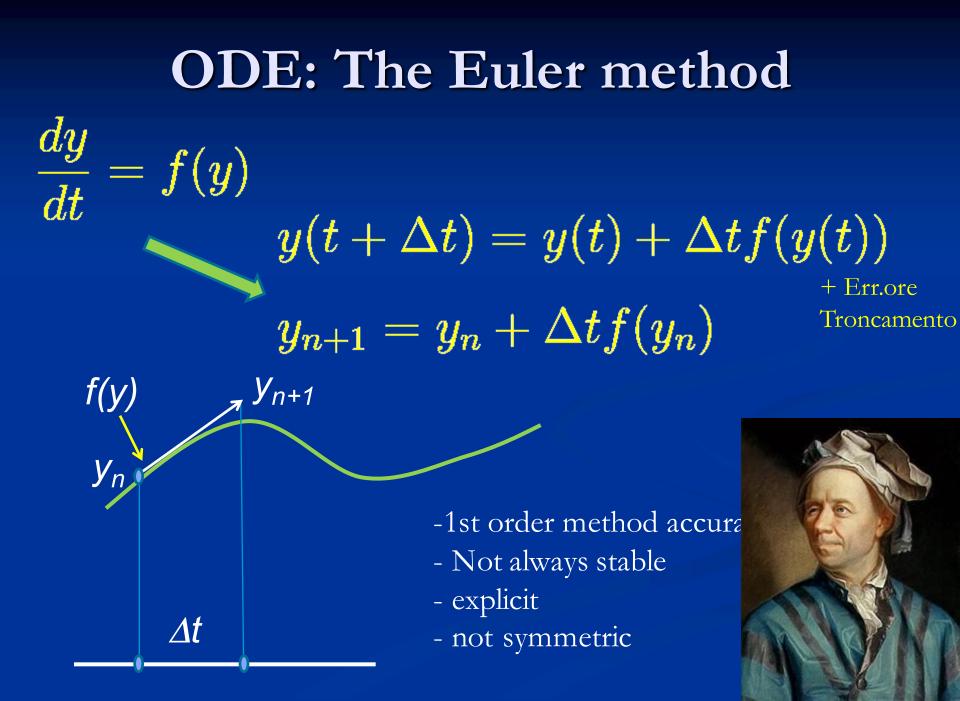
$$u(x_o + \Delta x, y_o) = u(x_o, y_o) + \Delta x \frac{\partial u}{\partial x}|_o + \frac{\Delta x^2}{2} \frac{\partial^2 u}{\partial x^2}|_o + O(\Delta x^3)...$$

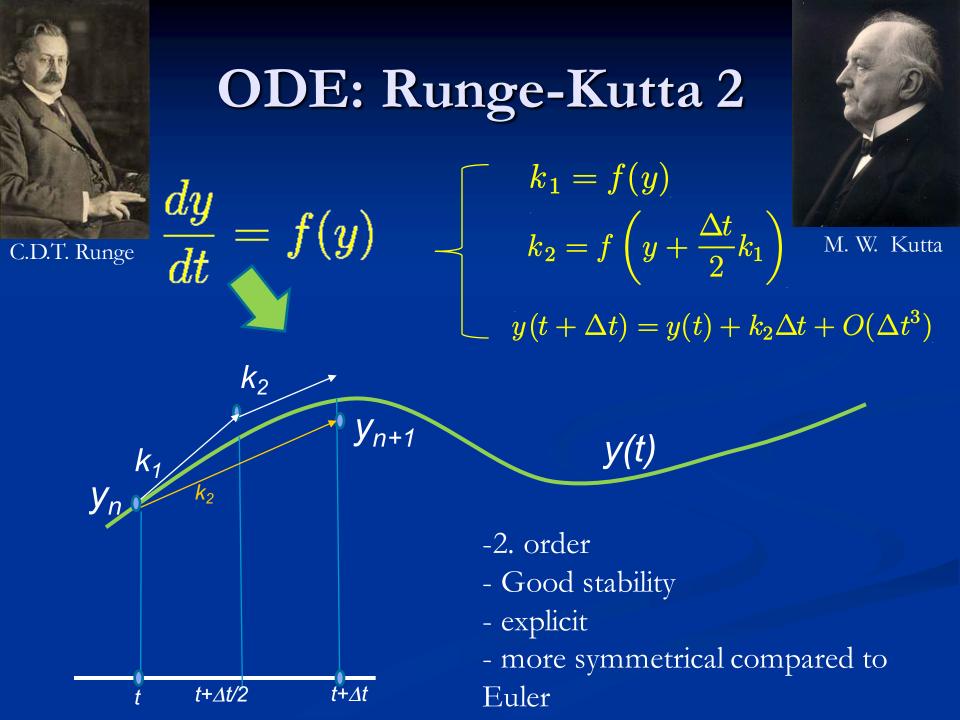
Finite differences representation of derivatives

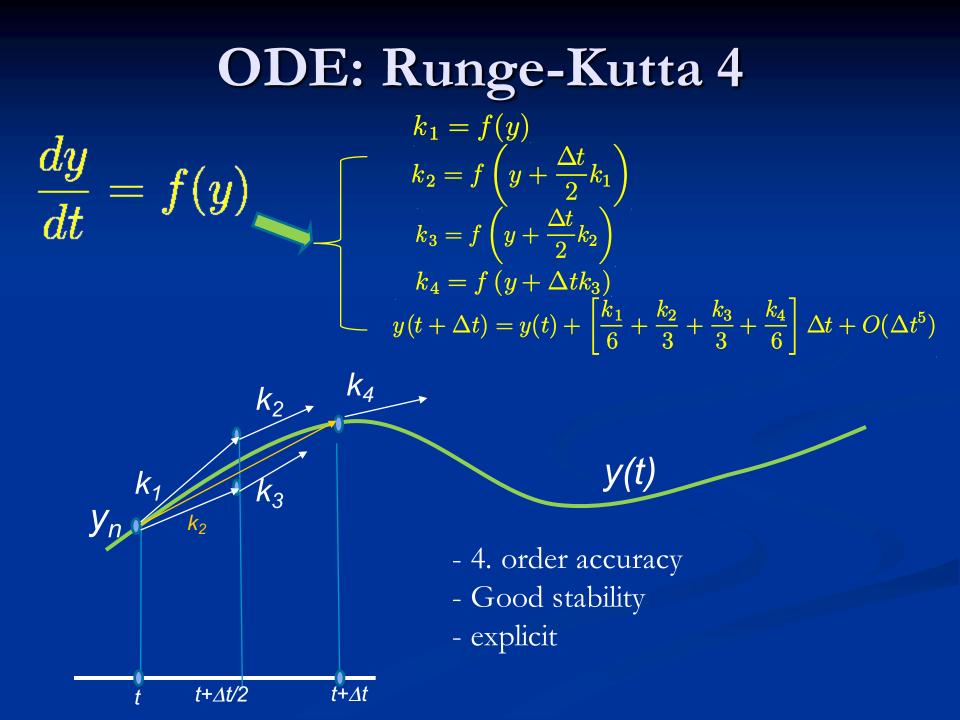
Can be obtained from:

Fitting a polynomial around a point::









Other methods

Leapfrog
.... Many other explicit methods
Predictor-corrector
Implicit methods (greater stability, non necessarily more accurate)

PDE, examples

$$\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial x} = 0$$

Scalar advection

$$\frac{u_{j}^{n+1} - u_{j}^{n}}{\Delta t} = -v \frac{u_{j+1}^{n} - u_{j-1}^{n}}{2\Delta x}$$

FT CS Non è stabile!

$$\frac{\partial u}{\partial t} = \nu \frac{\partial^2 u}{\partial x^2} + \nu \frac{\partial^2 u}{\partial y^2}$$

Heat equation

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} = \nu \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{\Delta x^2}$$

Initial condition problems vs. boundary problems

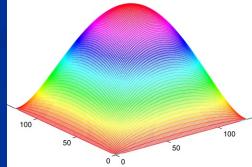
Initial conditions problems:

- Choice of initial conditions
- Evolution equations
- Boundary conditions

Boundary problems

- Equations to be solved in the domain
- Boundary conditions

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \rho$$



ด

PDE: Boundary conditions

Dirichlet conditions. *u=f* su ∂Ω
von Neumann conditions: eg: ∂u/∂n=f or ∂u/∂s=g in ∂Ω
Mixed conditions e.g: ∂u/∂n+ku=f

