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Numerical integration of 
differential equations

n We search a solution (a numerical approximation) for 
an ordinary differential equation

n Or a partial differential equation:

n Given appropriate initial and boundary conditions

d2y

dt2
= �ky



Numerical integration of ODEs

n NB: any ODE of order > 1 can be written as a system
of first order equations Eg:

n General problem:

d2y

dt2
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Finite	difference methods
nWe	substitute	to	the	continous	problem	a	
representation	on	a	discretized	grid	(in	space	
and	time)

-



L.F.	Richardson,	
Weather Prediction by	

Numerical Process (1922):

The	forecast factory

1.3 Outline of Richardson’s life and work 11

Figure 1.4 Lewis Fry Richardson (1881–1953). Photograph by Walter Stoneman,
1931, when Richardson was aged 50. (Copy of photograph courtesy of Oliver
Ashford)

method of cutting drains to remove water from peat bogs. The problem was formu-
lated in terms of Laplace’s equation on an irregularly-shaped domain. As this partial
differential equation is not soluble by analytical means, except in special cases, he
devised an approximate graphical method of solving it. More significantly, he then
constructed a finite difference method for solving such systems and described this
more powerful and flexible method in a comprehensive report (Richardson, 1910).

Around 1911, Richardson began to think about the application of his finite differ-
ence approach to the problem of forecasting the weather. He stated in the preface of
WPNP that the idea first came to him in the form of a fanciful idea about a forecast
factory, to which we will return in the final chapter. Richardson began serious work
on weather prediction in 1913, when he joined the Met Office and was appointed
Superintendent of Eskdalemuir Observatory, at an isolated location in Dumfrieshire
in the Southern Uplands of Scotland. In May 1916, he resigned from the Met Office

"Imagine a large hall like a theater except 
that the circles and galleries go right round 
through the space usually occupied by the 
stage. The walls of this chamber are painted to 
form a map of the globe. . . . From the floor of 
the pit a tall pillar rises to half the height of 
the hall. It carries a large pulpit on its top. In 
this sits the man in charge of the whole 
theatre." (Weather Prediction by Numerical 
Process)



Numerical circulation models



Mathematical equations that represent the physical  
characteristics and processes are entered for each box"

MODELLING THE CLIMATE SYSTEM 

(da	una	lezione	di	S.	Gualdi	– CMCC)



(da	una	lezione	di	S.	Gualdi	– CMCC)

Equations are converted to computer  
code and climate variables are set "

MODELLING THE CLIMATE SYSTEM 



Finite differences representation
of derivatives

Can be obtained from
n Classical definition of first order derivative of a 

function u(x,y) at a point:

n Taylor expansion of u(x,y) around a point



Finite differences representation
of derivatives

Can be obtained from:
n Fitting a polynomial around a point::
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ODE: The Euler method
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-1st order method accuracy
- Not always stable
- explicit
- not symmetric

+ Err.ore 
Troncamento



ODE: Runge-Kutta 2  
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-2. order
- Good stability
- explicit
- more symmetrical compared to 
Eulert+Δtt+Δt/2
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C.D.T. Runge M. W.  Kutta



ODE: Runge-Kutta 4  
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- 4. order accuracy
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- explicit
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Other methods

n Leapfrog
n …. Many other explicit methods
n Predictor-corrector
n Implicit methods (greater stability, non 

necessarily more accurate)



PDE, examples

Scalar advection

Heat equation

FT                      CS Non è stabile!



Initial condition problems vs. boundary
problems

n Initial conditions problems:
n Choice of initial conditions
n Evolution equations
n Boundary conditions

n Boundary problems
n Equations to be solved in the domain
n Boundary conditions

Time
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PDE: Boundary conditions

n Dirichlet conditions. u=f su ∂Ω
n von Neumann conditions: 

eg:    ∂u/∂n=f or ∂u/∂s=g in ∂Ω
n Mixed conditions e.g: ∂u/∂n+ku=f
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