| Course unit English
denomination | Constitutive modeling for hyperelastic and visco-hyperelastic materials | |--|--| | Teacher in charge
(if defined) | Emanuele Luigi Carniel
Chiara Giulia Fontanella
Alice Berardo
Ilaria Toniolo | | Teaching Hours | 24 | | Number of ECTS
credits allocated | 4 | | Course period | Second semester | | Course delivery
method | ☐ In presence ☐ Remotely ☐ Bended | | Language of
instruction | English | | Mandatory
attendance | ☐ Yes (% minimum of presence)☑ No | | Course unit
contents | Formulation of the initial and boundary value in mechanics Axiomatic theory of constitutive relationships Hyperelastic constitutive formulations for isotropic and anisotropic materials Visco-elastic and visco-hyperelastic constitutive formulations Implementation of the constitutive formulations within finite element method environment Planning, design and development of mechanical experimental tests for the univocal identification of the constitutive parameters Procedures for the identification of the constitutive parameters on the basis of experimental data | | Learning goals | The course aims to provide skills related to the modelling of the mechanical behaviour of soft materials. In particular, it aims to provide skills related to the theoretical foundations underlying the constitutive formulations, the experimental procedures necessary to obtain phenomenological data on the mechanical behaviour, the computational procedures for the identification of the constitutive parameters and the implementation in the framework of finite element software. | | Teaching methods | Frontal teaching, experimental and computational laboratory | | Course on
transversal,
interdisciplinary,
transdisciplinary | ⊠ Yes
□ No | | skills | | |---|--| | Available for PhD students from other courses | ⊠ Yes
□ No | | Prerequisites
(not mandatory) | Nonlinear mechanics of continuous media | | Examination
methods
(in applicable) | - Constitutive analysis by means of experimental tests and mathematical formulation. Oral examination. | | Suggested
readings | Holzapfel, Gerhard A., Nonlinear solid mechanicsa continuum approach for engineering /Gerhard A. Holzapfel. Chichester <etc.>: John Wiley and sons.</etc.> Y.C. Fung, Biomechanics - Mechanics of living tissues: Springer, 1993. | | Additional information | - |